Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Shui Li, Jian-Xin Chen,* Yuan-Biao Huang, Gu-Rong Chen and Ting-Yan Lan

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China

Correspondence e-mail:
jxchen_1964@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.102$
Data-to-parameter ratio $=18.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,3,5-Tris(4-methylphenyl)benzene

The title compound, $\mathrm{C}_{27} \mathrm{H}_{24}$, with a propeller-like shape, crystallizes with two crystallographically independent molecules in the asymmetric unit. Intermolecular $\pi-\pi$ interactions are pronounced in the crystal structure.

Comment

Numerous small molecular propellers of approximate D_{3} symmetry are known, but the vast majority of these compounds have the structure $(\operatorname{aryl})_{3} X$, where X is a single atom (Tong et al., 1997). However, we present the structure of (I) where the central atom is replaced by a benzene ring (Weber et al., 1988; Thallapally et al., 2000; Elmorsy et al., 1991; Grilli et al., 2002; Lindeman et al., 1984).

(I)

The crystal stucture of the title compound, (I), has two molecules (1 and 2) in the asymmetric unit (Fig. 1). Selected geometric parameters are shown in Table 1. In molecule 1, the central aromatic ring 1 (atoms $\mathrm{C} 1-\mathrm{C} 6$) is tilted with respect to the p-methylphenyl rings 2 (atoms C19-C24), 3 (C7-C12) and 4 (C13-C18), with dihedral angles of 42.93 (6), 35.15 (7) and $39.95(8)^{\circ}$, respectively. In molecule 2 , the dihedral angles of ring 1^{\prime} (atoms C28-C33) with rings 2^{\prime} (atoms C46-C51), 3^{\prime} (C34-C39) and $4^{\prime}(\mathrm{C} 40-\mathrm{C} 45)$ are 40.38 (8), 34.48 (7) and $47.99(7)^{\circ}$, respectively. p-Methylphenyl ring 4 in molecule 1 is close to being perpendicular to ring 4^{\prime} in molecule 2 , with a dihedral angle of $88.08(6)^{\circ}$. However, rings 1,2 and 3 are approximately parallel to the corresponding rings $1^{\prime}, 2^{\prime}$ and 3^{\prime} in molecule 2 , with dihedral angles of 11.15 (11), 14.57 (8) and $11.06(6)^{\circ}$, respectively. $\pi-\pi$ stacking interactions (with

Figure 1
View of the asymmetric unit of (I), showing the atom-labelling scheme. All H atoms have been omitted for clarity.

Figure 2
Packing diagram of (I), showing the $\pi-\pi$ stacking along the b axis. All H atoms have been omitted for clarity.
centroid-centroid distances of $3.46-3.64 \AA$) support the crystal packing (Fig. 2).

Experimental

All reagents were of AR grade, available commercially and used without further purification. The title compound was prepared according to the procedure of Lyle et al. (1953). To 50 ml of absolute ethanol saturated with hydrogen chloride, 10 g of p-methylacetophenone was added. After standing for 30 d , the reaction mixture was filtered and the solid residue was washed with cold absolute ethanol, giving pure 1,3,5-tris(4-methylphenyl)benzene. A small amount of product was obtained by pouring the above filtrate into water and filtering the mixture. The crude oily product required washing with alcohol.

Crystal data
$\mathrm{C}_{27} \mathrm{H}_{24}$
$M_{r}=348.46$
Monoclinic, $P 2_{1} / c$
$a=13.1640$ (6) \AA
$b=15.2531$ (9) \AA
$c=20.5554$ (11) \AA
$\beta=97.3083$ (17) ${ }^{\circ}$
$V=4093.8$ (4) \AA^{3}
$Z=8$
$D_{x}=1.131 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9186
reflections
$\theta=2.0-27.5^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.43 \times 0.21 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku Weissenberg IP diffractometer
Scintillation counter scans
Absorption correction: multi-scan
(TEXSAN; Molecular Structure
Corporation, 1998)
$T_{\text {min }}=0.899, T_{\text {max }}=0.994$
31594 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.102$
$S=0.99$
9186 reflections
487 parameters

9186 independent reflections
3366 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 19$
$l=-26 \rightarrow 26$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

C1-C7	$1.486(3)$	C28-C34	$1.477(3)$
C3-C13	$1.489(3)$	C30-C40	$1.490(3)$
C5-C19	$1.477(3)$	C32-C46	$1.487(3)$
C10-C25	$1.513(3)$	C37-C52	$1.520(3)$
C16-C26	$1.520(3)$	C43-C53	$1.513(3)$
C22-C27	$1.524(3)$	C49-C54	$1.516(3)$
C2-C1-C7	$121.0(2)$	C29-C28-C34	$119.9(2)$
C2-C3-C13	$121.9(2)$	C29-C30-C40	$120.4(2)$
C6-C5-C19	$121.7(2)$	C33-C32-C46	$121.1(2)$
C8-C7-C1	$120.3(2)$	C35-C34-C28	$120.9(2)$
C9-C10-C25	$121.3(2)$	C36-C37-C52	$121.6(2)$
C14-C13-C3	$120.7(2)$	C41-C40-C30	$120.8(2)$
C15-C16-C26	$120.9(2)$	C42-C43-C53	$120.8(2)$
C24-C19-C5	$120.2(2)$	C51-C46-C32	$121.0(2)$
C23-C22-C27	$119.9(3)$	C50-C49-C54	$121.2(2)$

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and methyl $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{C})$ for aromatic and methyl H atoms, respectively.

Data collection: TEXSAN (Molecular Structure Corporation, 1998); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $S H E L X L 97$; software used to prepare material for publication: SHELXL97.

We are grateful for financial support from the Natural Science Foundation of Fujian Province, China (No. E0310016), and the Education Commission Foundation of Fujian Province, China (No. JB05309).

organic papers

References

Elmorsy, S. S., Pelter, A. \& Smith, K. (1991). Tetrahedron Lett. 32, 4175-4176. Grilli, S., Lunazzi, L., Mazzanti, A. \& Pinamonti, M. (2002). J. Org. Chem. 67, 5733-5738.
Lindeman, S. V., Shklover, V. E., Struchkov, Yu. T., Khotina, I. A., Salykhova, T. M., Teplyakov, M. M. \& Korshak, V. V. (1984). Makromol. Chem. 185, 417-427.
Lyle, R. E., Dewitt, E. J., Nichols, N. M. \& Cleland, W. (1953). J. Am. Chem. Soc. 75, 5959-5961.

Molecular Structure Corporation (1998). TEXSAN. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Thallapally, P. K., Chakraborty, K., Carrell, H. L., Kotha, S. \& Desiraju, G. R. (2000). Tetrahedron, 56, 6721-6728.

Tong, L., Ho, D. M., Vogelaar, N. J., Schutt, C. E. \& Pascal, R. A. Jr (1997). J. Am. Chem. Soc. 119, 7291-7302.
Weber, E., Hecker, M., Koepp, E., Orlia, W., Czugler, M. \& Csoregh, I. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1251-1257.

[^0]: © 2006 International Union of Crystallography All rights reserved

